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Quasi-integrable systems based on the symplectic integrators (SI).
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PURPOSE AND METHODS

A. Motivation

The concept of integrable and quasi-integrable nonlinear optics has recently attracted significant attention.
Initially suggested by Danilov (see Ref.[1] and references therein) and refined by Danilov and Nagaitsev
in Ref.[2], the concept has been expanded to more realistic cases with space charge and chromaticity ef-
fects accounted for [3, 4]. Experimental demonstration of the integrable optics concept is currently being
conducted at the IOTA facility at Fermilab [5, 6] as well as at UMER ring at the University of Maryland [7].

The main idea behind the integrable optics concept is a special insert of nonlinear magnets that is accom-
modated by a purely linear ring. The system is arranged in a way that the effective Hamiltonian for the
lattice is almost time-independent and the potential produced by one nonlinear magnet warrants separation
of variables, and thus a second integral of motion [2, 8]. Initial designs of the nonlinear insert considered for
the initial experiments at IOTA [6] were based on an idea of approximating the smooth nonlinear potential
with a certain number of nonlinear magnets (17 in the case of IOTA octupole inset and nonlinear magnet
insert) with their strength scaled according to a prescription derived in Ref.[2] and placed equidistantly.
Questions remain whether this number could be reduced further, and if the performance and design of the
nonlinear insert could be further enhanced.

In Ref.[9] this question was addressed and a new method of designing a nonlinear lattice based on known
symplectic integration methods was proposed.

It was shown that octupole nonlinear insert at IOTA could be implemented with just five magnets. A new
arrangement was suggested as well as new relative scaling law. It was predicted as well that it is possible to
implement quasi-integrable optics with just thee nonlinear magnets (Yoshida lattice) that are strategically
placed along the ring.

In this proposal we suggest to probe both ideas (modification of the octupole channel and Yoshida lattice)
experimentally.

B. Theoretical background

It is known that integral of motion in the case of purely linear system (parabolic potential) is a Hamiltonian
in normalized coordinates. Below we expand on this idea and try to preserve some smooth Hamiltonian in
normalized coordinates with the nonlinear potential by designing proper lattice.
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The connection between a smooth Hamiltonian system and a map (lattice usually could be reduced to some
mapping) naturally arises from building an integrator that is essentially a discrete analog of a smooth system
by definition [10, 11]. The more accurate the integrator, the better it reproduces dynamics of the original
system. In this section we give a brief derivation of the specific forms of the known integrators that we are
going to utilize further.

We consider a smooth Hamiltonian of the form

H =
2

∑
i=1

q2
i + p2

i

2
+V (q1,q2). (1)

Here V is the nonlinear potential of the form

V (q1,q2) =
l

∑
j=3

a jPj(q1,q2), (2)

We split the Hamiltonian into a part that corresponds to linear motion

H1 =
2

∑
i=1

q2
i + p2

i

2
(3)

and a part

H2 =V (q1,q2) (4)

that combines all nonlinearities. Now if we consider a time mesh, t = mh m ∈N, with a step h, then the one
step integrator Ψh of the Hamiltonian H will have the from

Ψh = Rh ◦Kh. (5)

This is a well known symplectic Euler method. Here Rh is a matrix of rotations that corresponds to the flow
of the hamiltonian (3) and Kh is a thin nonlinear kick (a flow of the Hamiltonian (4)) given by

KhX0 = [q0
1, p0

1−h∂q1V,q
0
2, p0

2−h∂q2V ]T, (6)

with each partial derivative taken at the initial point (q0
1,q

0
2). Here X0 is the vector of initial conditions

X0 = [q0
1, p0

1,q
0
2, p0

2]
T. It is known that Euler method (5) conserves the Hamiltonian H = H1 +H2 up to the

order O(h) and consequently is accurate only for quite small steps in phase.

To preserve Hamiltonian with higher accuracy on the same mesh several high order integration methods
were developed in the late 1990 beginning of 2000 (see for example Ref.[11]). The first method that has
accuracy of O(h2) in preservation of Hamiltonian (1) was introduced to accelerator community by Ruth
Ref.[12]:

Φh = Rh/2 ◦Kh ◦Rh/2. (7)

Integrator that preserves the Hamiltonian up to the order O(h4) is the three step Yoshida integrator [13–15].

Φ
Y
h = Φγ3h ◦Φγ2h ◦Φγ1h. (8)

with corresponding gammas given by

γ1 = γ3 =
1

2−21/3 , γ2 =−
21/3

2−21/3 . (9)
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Following Ref.[9] to avoid negative time steps we use the identity R2π = I and write the integrator (8) in
the final form as

Φ
Y
h =Rγ1h/2 ◦Kγ1h ◦R2π−κ1h/2

◦K−κ2h ◦R2π−κ1h/2 ◦Kγ1h ◦Rγ1h/2,

γ1 =
1

2−21/3 , κ1 =
21/3−1
2−21/3 , κ2 =

21/3

2−21/3 . (10)

To establish a connection between integrators in normalized coordinates {q1, p1,q2, p2} and a real optical
lattice, we recall that propagation of the particle from position s1 to position s2 through a linear optical
channel could be described using a block diagonal transfer matrix [16] with the block of the type

Mx,y(s2|s1) =

Bx,y(s2)

[
cos(ψx,y) sin(ψx,y)
−sin(ψx,y) cos(ψx,y)

]
B−1

x,y (s1). (11)

Here, the lower index denotes coordinate pair (either {x,Px} or {y,Py}); ψx,y =
s2∫
s1

ds
βx,y(s)

is the phase advance

between position s1 and s2; Bx,y(s) is the corresponding block of the betatron amplitude matrix and B−1
x,y (s)

its inverse given by [16]

Bx,y(s) =

[√
βx,y(s) 0

− αx,y(s)√
βx,y(s)

1√
βx,y(s)

]
,

B−1
x,y (s) =

 1√
βx,y(s)

0
αx,y(s)√

βx,y(s)

√
βx,y(s)

 . (12)

Here βx,y(s), and αx,y(s) =−1/2β ′x,y(s) are the Twiss parameters of the linear lattice.

Now let us consider an integrator, Ψh, given by (7) and propagate a vector of initial conditions for one step,
h, that corresponds to the phase advance between points, s2 and s1, of a linear lattice

Xh = Rh/2 ◦Kh ◦Rh/2X0. (13)

With the identity I = B(s)◦B−1(s) (here I is the identity matrix) equation (13) transforms as

Xh = M(s2|s1)◦B(s1)◦Kh ◦B−1(s1)◦M(s1|s0)X0. (14)

Here, X denotes the unnormalized state vector Xh,0 ≡ BXh,0.

We evaluate B(s1)◦Kh ◦B−1(s1) further to achieve nonlinear element strength scaling with the β -function
in a form

Nβ X0 =

[
x0,P0

x −h
∂xU√

βx
,y0,P0

y −h
∂yU√

βy

]
, (15)

with

∂x,yU = ∂q1,q1V (q1,q2) q1→
x√
βx

,q2→
y√
βy

. (16)

The two building blocks of the integrator are the flows Rh and Kh, that now with the help of the Eq.(11),
Eq.(15) and Eq.(16) could be transformed to M(s2|s1) and Nβ respectively. Maps M(s2|s1) and Nβ could
be implemented with thin lenses in a real lattice.
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FIG. 1. Schematic diagrams of the nonlinear magnet layout for one period of the lattice: (a) Ruth lattice, based on
Ruth second order integrator (7) and Yoshida lattice (c) based on Yoshida integrator (10). Here s is the longitudinal
spatial coordinate and a is the normalized magnitude of the nonlinear magnets, h is the phase advance between the
magnets, multipliers γ1 and κ1 for Yoshida lattice are given by Eq(10).

C. Experimental setup

1. Octupole channel

A schematic layout of the proposed experiment is shown in Fig.1(a). All machine parameters should be
the same as for the initial experiments with the nonlinear insert. Machine lattice is arrange as a T-insert as
prescribed in Ref.[2] - a linear focusing matrix in both x and y directions. β - functions in the drift where
oclupoles are placed should be equal.

As it follows from Eq.(15) and Eq.(16) scaling of the octupoles with respect to the β - function should be

a(4)
Ψ
∼ 1

β 2(si)
. (17)

Here, si - is the physical position of the i-th thin octupole in the lattice. Octupoles have to be place according
to the condition of the constant phase advance. Positions s of the octupoles are calculated on a constant
phase mesh by numerically inverting formula for the phase advance in the drift

ψ(s) =arctan

(√
kL

4− kL

)
− arctan

(√
kL−2

√
ks√

L(4− kL)

)
. (18)

Several sets of distances between the magnets that correspond to a given machine tune are listed in the Table
I corresponding diagrams of octupole channel operation are shown in Fig.2.

TABLE I. Physical positions inside the drift in meters for the octupole magnets. Zero (s = 0) is taken at the point
βx = βy. Position in s is taken at the magnet center. Full length of the octupole channel is 1.8 m.

ν f h s1 s2 s3 s4 s5
0.148 0.188 0.2 0.562 0.9 1.238 1.6
0.237 0.297 0.238 0.6 0.9 1.2 1.562
0.366 0.46 0.37 0.7 0.9 1.1 1.43

For the head to head comparison it is suggested to collect data for the lattice of 5 octupoles with original
scaling

a(4)DN ∼
1

β 3(si)
. (19)
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FIG. 2. Schematic diagrams of the octupole channel operation for the Ruth lattice. Red color indicates magnets that
are turned on, white is for the magnets that are completely turned off. Equidistant phase placement and scaling with
the β -function as given by Eq.(17) in Ref.[9].

1.8  m

10 cm 10 cm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

FIG. 3. Schematic diagrams of the octupole channel operation for the base line measurements. Red color indicates
magnets that are turned on, white is for the magnets that are completely turned off. Equidistant magnet placement and
scaling with the β -function as given by Eq.(19) in Ref.[2].

and equal distances between the magnets (0.3 m), the way it is currently designed (by simply turning down
12 of 17 octupoles). On pattern for the octuples for this comparison is 3,6,9,12,15 as shown on figure Fig.3.
First the data (turn by turn BPM data and SyncLight data [17]) is collected for the unmodified octupole

channel. Then for the same machine tune octupoles are physically moved to satisfy condition of the equal
phase advance and experiment is repeated.
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FIG. 4. Yoshida lattice for the IOTA ring. Approximate sextupole positions are 970 cm, 1027 cm and 3025 cm.

2. Yoshida lattice

Schematics of the Yoshida lattice is shown in Fig.1(b). According to the integrator formula Eq.(10) three
nonlinear magnets have to be separated by three drifts that are calculated according the step h and coef-
ficients γ1,γ2, γ3. It should be noted that phase advance between first and second and second and third
magnets is large.

For the proof of principle experiment it is suggested to use three of four IOTA sextupoles that are located
symmetrically in pair on the opposite sides of the ring. According to the Eq.(15) and Eq.(16) scaling of the
sextupoles with respect to the β - function should be

a(3)
Ψ
∼ 1

β 3/2(si)
. (20)

Here, as before si - is the physical position of the i-th sextupole in the lattice. Additional scaling comes
from corresponding gammas as well. It is worth noting that second magnet have to have inverted polarity
with respect to other two.

TABLE II. Yoshida lattice parameters for different fractional tunes of the ring.

ν f h γ1h/2 2π−κ1h/2
0.05 0.3142 0.0338×2π 0.9912×2π

0.1 0.6283 0.0676×2π 0.9824×2π

0.15 0.9425 0.1013×2π 0.9737×2π

Conditions on the phase advance between sextupoles are listed in the Table II for different values of frac-
tional tune ν f . Parameter h is connected to the fractional tune ν f though the relation

ν f =
h

2π
. (21)

The following additional conditions on the linear optics should be met:
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1) Phase advance between the sextupoles in x is equal to Phase advance in y.

2) β -functions are equal at the positions of the sextupoles.

3) Dispersion is zero at the positions of the sextupoles.

4) Tune of the ring have to be chosen such that h < 1.

An example of IOTA lattice that fulfill conditions above is shown in the Fig.4.

D. Expected results and sources of uncertainty

We expect to demonstrate that suggested lattice indeed close reproduce dynamics of the smooth Henon-
Heiles system. We are going to extract transverse phase space from the BPM data and build Poincare
surface of sections for the Ruth lattice with octupoles Fig.5(a) and for the Yoshida lattice with sextupoles
Fig.5. We expect to observe characteristic beam shape on the SyncLight system (quasi rectangular for the
octupoles and triangular for the sextupoles) as well as to detect tuneshifts due to the nonliearities and try to
cross certain resonances (1/3, 1/4, 1/2). As additional indirect evidence we plan to demonstrate conservation
of corresponding Henon-Heiles Hamiltonian in normalized coordinates.

Main source of uncertainty is the phase advance between the nonlinear magnets as well as mismatch in the
machine tune. From the preliminary simulations we see that 5% variation in both is acceptable and will still
allow us to reach the goal.

FIG. 5. Simulated poincare surface of sections for the Ruth octupole lattice (left) and for the Yoshida sextupole lattice
(right).

BEAM CONDITIONS

• Species: electron

• Energy: any energy between 70 - 150 MeV

• Intensity: Main operating mode is regular beam injection. Intensity could be any known intensity
that could be successfully detected by the BPMs and SyncLight.
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• Number of bunches, transverse emittance, beam size, bunch length, momentum spread: No
specific requirements to the beam parameters.

• Injection time structure: Inject the beam to the central orbit. Kick the beam, record BPM and
SyncLight signals. Reinjection on beam loss, no specific timing.

• Orbit: central orbit for the injection and calibrations.

• Lattice parameters: Octupole experiment requires the same lattice as any experiment with the
nonlinear channel. Equal β functions in the drift and the ring set as T-insert. For the Yoshida lattice,
required optics is shown in Fig.4.

APPARATUS

No specific apparatus is needed except what is already installed and commissioned at the IOTA ring is
needed. For the octupole experiment access to the basic bench work tools is desirable.

RUN PLAN

E. Experiment with Octupoles (Ruth lattice)

• Record turn-by-turn data for beam kicked in X and/or Y planes for a range of kick amplitudes and
octupoles settings in original configuration with reduced number of powered octupoles: 1-2 half-shift
(4h each, frequent injections)

– may be a part of original octupoles studies

• IOTA hall access to relocate octupoles: 4h

• Record turn-by-turn data for beam kicked in X and/or Y planes for a range of kick amplitudes and
octupoles settings: 2-3 half-shifts (4h each, frequent injections)

• IOTA hall access to return octupoles to original positions: 4h

F. Experiment with Sextupoles (Yoshida lattice)

• Tune injection lattice of FAST to match beam with SNL lattice: 4h

• Inject beam and tune IOTA lattice: 2 half-shifts and 1 full shift: 2x4h and 8h

• Record turn-by-turn data for beam kicked in X and/or Y planes for a range of kick amplitudes and
sextupoles settings: 2-3 half-shifts (4h each, frequent injections)
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